Quick Sort
average O(n log n) - best: partition splits the array evenly O(n log n) - worst: sorted or reverse sorted O(n^2)
not stable & in-place
public static void quickSort(int[] a, int start, int end) {
if (a == null || a.length <= 1) {
return;
}
while (start < end) {
int pivot = partition(a, start, end);
quickSort(a, start, pivot - 1);
quickSort(a, pivot + 1, end);
}
}
// put nums that are <= pivot to the left
// put nums that are > pivot to the right
public static int partition(int[] a, start, end) {
int pivot = a[start];
int k = start;
for (int i = k + 1; i <= end; i++) {
if (a[i] < pivot) {
k++;
//swap a[i] <-> a[k]
int temp = a[k];
a[k] = a[i];
a[i] = temp;
}
}
a[start] = a[k];
a[k] = pivot;
return k;
}
Randomized the pivot index can help improve the worst running time.
import java.util.Random;
public class Solution {
public Random rand;
public void sortIntegers(int[] A) {
rand = new Random();
quickSort(A, 0, A.length - 1);
}
private void quickSort(int[] A, int start, int end) {
if (start >= end) return;
int index = rand.nextInt(end - start + 1) + start;
int pivot = A[index];
int left = start;
int right = end;
while (left <= right) {
while (left < right && A[left] < pivot) {
left++;
}
while (left < right && A[right] > pivot) {
right--;
}
//swap left and right
if (left <= right) {
int temp = A[left];
A[left] = A[right];
A[right] = temp;
left++;
right--;
}
}
quickSort(A, start, right);
quickSort(A, left, end);
}
}