Matrix
1. Search a 2D Matrix
- O(log(row) + log (col)): 2 x binary search
- O(log (row * col)): flatten 2D matrix to 1D array
- 2 x binary search
需要注意的是在进入row search的时候的判断条件:matrix[end][0] <= target
class Solution {
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return false;
int start = 0, end = matrix.length - 1;
while (start + 1 < end) {
int mid = start + (end - start) / 2;
if (matrix[mid][0] == target) {
return true;
} else if (matrix[mid][0] < target) {
start = mid;
} else {
end = mid;
}
}
if (matrix[end][0] <= target) {
return searchRow(matrix, end, target);
} else {
return searchRow(matrix, start, target);
}
}
private boolean searchRow(int[][] matrix, int row, int target) {
int left = 0, right = matrix[row].length - 1;
while (left + 1 < right) {
int mid = left + (right - left) / 2;
if (matrix[row][mid] == target) {
return true;
} else if (matrix[row][mid] < target) {
left = mid;
} else {
right = mid;
}
}
if (matrix[row][left] == target || matrix[row][right] == target) return true;
return false;
}
}
- flatten 2D matrix to 1D array
题目中给出的两个条件可以让整个matrix变成一个sorted array。
注意:如何转换成row, col
col = mid % matrix[0].length;
row = mid / matrix[0].length;
public boolean searchMatrix(int[][] matrix, int target) {
if (matrix == null || matrix.length == 0 || matrix[0].length == 0) return false;
int start = 0, end = matrix.length * matrix[0].length - 1;
int col = 0, row = 0;
while (start + 1 < end) {
int mid = start + (end - start) / 2;
col = mid % matrix[0].length;
row = mid / matrix[0].length;
if (matrix[row][col] == target) {
return true;
} else if (matrix[row][col] < target) {
start = mid;
} else {
end = mid;
}
}
int num1 = matrix[start / matrix[0].length][start % matrix[0].length];
int num2 = matrix[end / matrix[0].length][end % matrix[0].length];
if (num1 == target || num2 == target) return true;
return false;
}
2. Search a 2D Matrix II
从左下角开始走
O(row + col),最多是走到了对角线的最后一个点。每次row和col都是走一格子,最多是row + col。